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Numerical confirmation of late-time t1Õ2 growth in three-dimensional phase ordering

Gregory Brown1,* and Per Arne Rikvold1,2,†

1School of Computational Science and Information Technology, Florida State University, Tallahassee, Florida 32306-4120
2Center for Materials Research and Technology, and Department of Physics, Florida State University,

Tallahassee, Florida 32306-4350
~Received 2 November 2001; published 5 March 2002!

Results for the late-time regime of phase ordering in three dimensions are reported, based on numerical
integration of the time-dependent Ginzburg-Landau equation with nonconserved order parameter at zero tem-
perature. For very large systems (7003) at late times,t>150, the characteristic length grows as a power law,
R(t);tn, with the measuredn in agreement with the theoretically expected resultn51/2 to within statistical
errors. In this time regimeR(t) is found to be in excellent agreement with the analytical result of Ohta, Jasnow,
and Kawasaki@Phys. Rev. Lett.49, 1223 ~1982!#. At early times, good agreement is found between the
simulations and the linearized theory with corrections due to the lattice anisotropy.
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I. INTRODUCTION

Phase ordering and phase separation of materials, fol
ing a rapid change in an intensive variable from a region
the phase diagram where the system is uniform to one
which two or more phases coexist, are among the oldest
most common methods of materials processing. A typ
example is the temperature quenching performed by bla
smiths since antiquity, in which hot metal is suddenly coo
by immersion in water. In fact, the metallurgical ter
‘‘quenching’’ has become common in the literature on t
dynamics of phase transformations. Modern examples of
use of phase ordering as a processing technique include
cipitation strengthening in metals@1# and fabrication of
glasses@2#.

As the domains of different phases evolve and grow a
the quench, the dynamic scaling hypothesis states that
behavior over a large range of length scales can be desc
in terms of a single, time-dependent characteristic len
R(t). For many phase-ordering processes, this character
length behaves as a power law for asymptotically late tim

R~ t !;tn, ~1!

where the growth exponentn depends on thedynamic uni-
versality class @3,4#. The simplest of these universalit
classes is comprised of systems with only local relaxatio
dynamics and a nonconserved scalar order parameter, kn
as ‘‘Model A’’ in the classification scheme of Hohenberg a
Halperin@3#. At late times the order parameter takes distin
values in the two phases, which without loss of genera
can be taken as61. The two phases are separated by a sh
interface, where the order parameter is near zero, and
local interface velocity is proportional to the local mean c
vatureH(r ,t). In two dimensions this is simply the invers
of the local radius of curvature,R(r ,t), while in three dimen-
sions it is the arithmetic mean,H(r ,t)5@1/R1(r ,t)
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11/R2(r ,t)#/2, where 1/R1 and 1/R2 are the two principal
curvatures. The global characteristic lengthR(t) can be iden-
tified as proportional to the inverse of the average ofuH(r ,t)u
over the whole interface. It thus obeys the asymptotic eq
tion of motion,

Ṙ~ t !;1/R~ t !, ~2!

which yieldsn51/2, independent of the spatial dimensio
This result was shown early on by Lifshitz@5#, Chan@6#, and
Allen and Cahn@7#, and it is often referred to as Lifschitz
Allen-Cahn dynamics. Physical realizations of this univers
ity class include phase ordering in anisotropic magnets@4#,
alloys such as Cu3Au @8# and Fe3Al @9#, liquid crystals
@10,11#, and adsorbate systems@12#.

Since experimental complications due to other effec
such as strain fields and hydrodynamics, usually canno
completely excluded, it is desirable to obtain numerical ve
fication in a cleanly defined three-dimensional model syste
Even in two dimensions, direct numerical verification of t
asymptotict1/2 growth through a direct estimate ofR(t) is
uncommon; examples are Refs.@12–15#. A more common
practice is to show consistency of numerical results with
asymptotic growth, e.g., through Monte-Carlo renormaliz
tion group techniques@16,17# or scaling of the correlation
function @18# or structure factor@19#. However, to our
knowledge only experimental verifications have so far be
reported in three dimensions@8,11#. Until now, numerical
verification has been prevented by the very large systems
long simulation times needed to observe the asymptotic s
ing over a sufficient time interval to provide accurate me
surements ofn. In this paper we present such unequivoc
confirmation oft1/2 growth at late times in three-dimension
numerical simulations of very large systems.

The remainder of this paper is organized as follows.
Sec. II we introduce the numerical model and discuss
numerical method used to integrate its time evolution.
Sec. III we discuss the time evolution at early times. In S
IV we present the main numerical results of this paper:
growth of the characteristic length at late and intermedi
times. A summary and conclusions are presented in Sec
©2002 The American Physical Society37-1
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II. MODEL AND NUMERICAL METHOD

A generic model for the nonconserved dynamics of Mo
A is given by the time-dependent Ginzburg-Landau~TDGL!
equation,

]c~r ,t !

]t
52

dF@c~r ,t !#

dc~r ,t !
1z~r ,t !, ~3!

where the functional derivative corresponds to the determ
istic relaxation associated with the free-energy functio
F@c(r ,t)#, andz(r ,t) is a stochastic process that represe
thermal fluctuations. For the local part of the free-ene
functional we choose the Ginzburg-Landau-Wilson free
ergy @4#

F@c~r ,t !#5E dr F2
1

2
c2~r ,t !1

1

4
c4~r ,t !1

c

2
u“c~r ,t !u2G ,

~4!

which has minima atc561, corresponding to the two de
generate uniform phases. The problem can be cast into
dimensionless form without loss of generality@19,20#. The
nonequilibrium process associated with a system tha
quenched to a temperature far below the critical tempera
is controlled by a zero-temperature fixed point@4#. Thus, the
stochastic part of Eq.~3! can be ignored, and the equation
motion becomes

]c~r ,t !

]t
5~11c¹2!c~r ,t !2c3~r ,t !. ~5!

The numerical integration of Eq.~5! with c53/2 @21# was
performed using a finite-difference approach on cubic
tices with periodic boundary conditions and 1003, 3003,
5003, and 7003 points. Results for each system size we
averaged over five integrations from different initial cond
tions, except for the 3003 lattice, for which results were av
eraged over 10 runs. The initial condition consisted of a r
dom value ofc at each lattice point, with values chosen fro
a uniform distribution on @2c0 ,c0#. Unless otherwise
noted,c050.1 for results presented here. From this init
configuration, the system was integrated using a first-or
Euler scheme withDt50.01. For early times,t,10, we also
tried Dt reduced by a factor of 5, which changedR(t) by
only about 2%. Approximate isotropy was ensured by us
a 19-point discretization of the Laplacian, analogous to
nine-point discretization commonly used in two dimensio
@22,23#.

The computational resources required for this numer
integration are large. The storage required for one array
7003 lattice sites is more than 2.5 Gbytes, and two su
arrays are required by the integration algorithm. Integrat
of the 7003 lattice over 1500 time units took 84 h on 1
four-processor nodes~5040 CPU h! on an IBM SP3 super-
computer.
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III. EARLY-TIME BEHAVIOR

Immediately after the quench, the local order parame
c(r ,t) is randomly distributed with values centered arou
0. The initial response of the system is to form small regio
in local equilibrium, dominated by values near11 or 21.
This process is essentially completed byt'10, as illustrated
in Fig. 1, which shows the time evolution ofA^c2(r ,t)& for
early times. For the initial condition used here^c2(r ,0)&
5c0

2/3 immediately after the quench, and it approaches un
at late times as the regions in local equilibrium come
dominate the system.

The initial relaxation away from the uncorrelated rando
state, towards a state dominated by regions in which
order parameter everywhere has the same sign, is well
scribed by the linearized version of Eq.~5! ~corresponding to
a Cahn-Hilliard equation for nonconserved order parame
@24,25#!. The Fourier representation of the solution of th
linear dynamical equation is

ĉ~k,t !5ĉ~k,0!exp@~12ck2!t#, ~6!

where ĉ(k,t) is the spatial Fourier transform of the orde
parameter field. The progress of the phase ordering at e
times can be quantified bŷc2(r ,t)&, where^ & represents
averaging over space. By integratingĉ(k,t)ĉ(2k,t) over
thek-space region associated with the finite system, the s
tial average can be evaluated as

FIG. 1. Average magnitude of the local order parameter at e
times,A^c2(r ,t)&, averaged over space and trials, shown vs time
a log-linear scale. The intial decrease at the earliest times is du
diffusional relaxation on short length scales. The near-exponen
increase that follows is due to the local relaxation towards one
the other of the degenerate values,c(r ,t)'61. The solid curves
are numerical solutions of the linear theory for the slightly anis
tropic Laplacian used here, while the dashed curves correspon
the fully isotropic analytical result, Eq.~8!. The solid squares rep
resent a 3003 simulation with a very wide distribution of initial
values,c051.
7-2
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NUMERICAL CONFIRMATION OF LATE-TIME t1/2 . . . PHYSICAL REVIEW E 65 036137
^c2~r ,t !&5
^c2~r ,0!&

~2p!d E dk exp„2t@12ck2~k!#…, ~7!

whered is the spatial dimension, and the integration lim
are @2p,p# in each Cartesian coordinate. In deriving th
result, we used the fact that the uncorrelated initial condit
used here givesĉ(k,0)ĉ(2k,0)5^c2(r ,0)&, independent of
k. In Eq. ~7! the expressionk2(k) takes into account the
anisotropy ofk2 that results from the numerical impleme
tation of the Laplacian. When no anisotropy exists, the in
gral in Eq.~7! can be evaluated analytically to yield

^c2~r ,t !&5^c2~r ,0!&e2tFerf~pA2ct!

2A2pct
G d

. ~8!

This result is shown as dashed curves in Fig. 1. For
Laplacian used in the simulations presented here, the an
ropy in the squared magnitude of the wave vector is

k2~k!542
4

3 Fcoskx cos2
ky

2
1cosky cos2

kz

2

1coskz cos2
kx

2 G . ~9!

Using this expression fork2(k), Eq. ~7! was evaluated nu
merically using midpoint integration at 106 uniformly dis-
tributed points. The results are presented as the solid cu
in Fig. 1, where good agreement is seen between the s
lations and the linear theory fort&5. The initial decrease is
due to the diffusional decay of high-wave-vector modes w
k2(k).c21. During this brief period one can define a micr
scopic diffusion length that increases with time ast1/2 @14#.
The subsequent rapid increase is caused by the expone
growth of the modes at smaller wave vectors. Similar ti
dependence for̂c2(r ,t)& has been observed previously
two-dimensional simulations@14#. As c(r ,t) approaches
unity, the neglected cubic term in the TDGL equation b
comes important, and the linear approximation breaks do
as the order parameter saturates to its degenerate equilib
values inside the domains.

To quantify the effects of the initial conditions on th
early-time behavior, results for one simulation withc051
on a 3003 system are also shown in Fig. 1. Even for this lar
value of c0, the linear theory works reasonably well at th
earliest times.

IV. LATE AND INTERMEDIATE TIMES

The scaling ansatz associated with Eq.~1! is not valid
until a clear separation has been achieved between la
scale fluctuations representing domains in which the or
parameter takes values near its two degenerate equilib
values, and microscopic fluctuations of the local order
rameter about these values within the domains@9,26–28#.
While the early-time growth is completed byt'10, the sepa-
ration of length scales is not complete until a significan
later time, as is now shown.
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For the large simulations presented here, it was neces
to use a computationally efficient estimate of the charac
istic lengthR(t). This was done by identifyingR(t) as pro-
portional to the inverse of the interfacial area per unit v
ume @29,30#. The interface area was measured by count
the number of the nearest-neighbor lattice-site pairs hav
values of the local order parameter with opposite signs. A
result,

R5H 2/~3N!(
^ i , j &

Q@2c~r i !c~r j !#J 21

21. ~10!

Here N is the number of lattice sites, the sum is over
nearest-neighbor pairs, and the Heaviside functionQ@x#
50 for x<0 and 1 otherwise. This definition ofR(t) ap-
proximates the inverser derivative of the normalized two
point correlation function,C(r ,t)5C„r /R(t)…, in the small-r
limit. Details on the derivation of Eq.~10! are given in the
Appendix. Direct comparison with the much more compu
tionally intensiveC(r ,t) for a 3153 system confirms this
equality to within 4% fort>500. Corrections toR, related to
unequal volumes of the degenerate phases@29,30#, which
become important at very late times, do not affect the res
presented here and have been neglected. The measure
ues ofR are shown in Fig. 2 vs time on a log-log scale. T
characteristic length clearly does not obey a single po
law for all times. It is only at the latest times,t*150, that the
asymptotic power-law regime is reached. Least-squares
ting of a power law to the 7003 data gives an exponen
0.51160.01 for 150<t<1500. This result is consistent wit
the expected valuen51/2.

A more sensitive test for true power-law behavior can
made by measuring the instantaneous, effective growth
ponent as a function of time. Here this is accomplished

FIG. 2. The characteristic lengthR from Eq.~10!, shown vs time
t, on a log-log scale. The dependence ofR(t) on the system size
indicates that finite-size effects influence the late-time growth
ponent. A least-squares fit~the solid line! for the 7003 system,
which should display minimal finite-size effects for the times sho
here, yields an exponent estimate ofn50.51160.01 for t>150.
The dashed line is the predictedR(t) from Ref. @31#, Eq. ~11!.
7-3



-
in
o

d
he
c-
ha
y
e

d
o
el
ze

4,
-

th
ys
e

a
ed

t
en

-
both

rea

ea
in-
lue,
,

for
o-

nd

-
ach

as
side
he

e
t f
ee
lie

.
s as

s a

GREGORY BROWN AND PER ARNE RIKVOLD PHYSICAL REVIEW E65 036137
estimating the derivatived ln R/d ln t using three-point cen
tral differencing. The results are presented in Fig. 3. Dur
the early-time regime of near-exponential growth
A^c2(r ,t)&, the effective exponent forR(t) falls steeply
from near unity at very early times to near 0.40 arount
'10. For t*20 the effective exponent rises again for t
systems larger than 1003. This steady increase of the effe
tive exponent in the intermediate-time regime indicates t
here, too, the dynamics are not properly described b
power law. The only system for which the exponent do
become constant is the 7003 lattice for t*150. For these late
times the mean exponent is 0.51960.01. The error on all
estimates of the exponent reported here is the standard
viation of these data. Given the trends with system size
served in Figs. 2 and 3, finite-size effects are most lik
affecting the late-time behavior in the other system si
considered here.

A final test forn51/2 at late times is presented in Fig.
whereR is plotted againstAt. The straight line is the least
squares fit of the 7003 data for t>150; it has a correlation
coefficient of 0.999 976. The effect of system size on
growth shows a clear trend, with progressively smaller s
tems departing from the common behavior at progressiv
earlier times.

It is informative to compare the present results forR(t) to
the theoretical prediction of Ohta, Jasnow, and Kawas
~OJK! @31#. Defined such that the slope of the normaliz
two-point correlation functionC(r ,t) is 21/R(t) in the
small-r limit, the OJK result is

ROJK~ t !5
p

2
A4c

d21

d
t. ~11!

In Fig. 2, the OJK result appears as the dashed line, and
agreement with the simulation data at late times is excell

FIG. 3. Estimate of the instantaneous effective growth expon
vs the central time of the data used for the estimate. See tex
details. Simple power-law growth with a constant exponent is s
only for t.150 for 7003, the largest system considered here. Ear
times are clearly not associated with a constant exponent.
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The OJK theory is similarly successful for the two
dimensional analog of the model presented here, where
the agreement between Eqs.~10! and ~11! and the resulting
scaled form of the structure factor~the Fourier transform of
the two-point correlation function! are excellent@19#.

An alternative method to obtain the specific interface a
in this system, is to consider the quantityA(t)
512A^c2(r ,t)&, which corresponds to the interface ar
multiplied with an average interface thickness. Once the
terface thickness has converged to a time-independent va
A21(t)}R(t) @23#. For times later than approximately 20
A21 increases as a power law witht, as shown in Fig. 5.
Least-squares fits to the simulation data for 150<t<1500
result in estimated exponents of 0.48760.01, 0.48060.01,
and 0.51260.01 for the 3003, 5003, and 7003, respectively.
An average over the same interval of effective exponents
A21(t), obtained by three-point differencing in a way anal
gous to those discussed above forR(t), give an estimate of
0.51160.01 for the 7003 system. These 7003 results, in par-
ticular, are thus consistent withn51/2.

V. SUMMARY AND CONCLUSIONS

From the numerical data obtained in this study, we fi
that the time evolution of the three-dimensional ModelA
system defined by Eq.~5! can be divided into four time re
gimes. The time regimes and the evolution behavior in e
are summarized as follows.

~1! For very early times, before the order parameter h
saturated to near its two degenerate equilibrium values in
distinct domains, the time evolution is well described by t
linearized version of Eq.~5!, as seen in Fig. 1. During this
stage, and untilt'10, the effective exponent ofR(t) falls
steeply from near unity to near 0.45, as seen in Fig. 3.

nt
or
n
r

FIG. 4. A graphical test fort1/2 growth in the late-time regime
The onset of finite-size effects occurs at progressively later time
the system size grows. For the 7003 lattice the finite-size effects are
unimportant for the times considered here. The straight line i
least-squares fit to the 7003 data fort>150, to the right of the large
tick mark.
7-4
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~2! In the intermediate-time regime, for 10&t&150, both
R(t) andA21(t) as they are defined here become reasona
measures of a characteristic length, and least-squares fi
log-log plots, such as Fig. 2 and Fig. 5, in this time regim
yield apparent exponent estimates near 0.45. However
spection of Fig. 3 shows that the effective exponent is
constant in this regime: for the systems larger than 1003 it
increases steadily back towards the vicinity of 0.5. Thus,
growth of the characteristic length in this intermediate-tim
regime is also clearly not well described by a simple pow
law.

~3! For late times,t*150, and for the largest system stu
ied, 7003, the effective exponent forR(t) @and also for
A21(t)# levels off to fluctuate near 0.5. A least-squares fit
R(t) ~Fig. 2! over a full decade, 150&t&1500, yields an
estimate of 0.51160.01, while an average over the effectiv
exponents~Fig. 3! in the same interval yields 0.51960.01.
The corresponding estimates forA21(t) are 0.51260.01 and
0.51160.01, respectively. These estimates are all consis
with the theoretical expectation ofn51/2.

~4! For somet.1500 for the 7003 system, and indeed fo
much smaller times for the smaller systems, finite-size
fects made observation oft1/2 growth impossible. In this
very-late-time regime, which is pushed out to later times
larger systems,R(t) becomes on the order of the system si
and the order parameter selects one or the other of its
degenerate values. In Fig. 2, and even more clearly in Fig
it can be seen howR(t) for progressively smaller system
deviates from the asymptotic behavior at progressively e
lier times.

We emphasize that, although we see four different ti
regimes in the domain growth, it isonly in the late-stage
Lifshitz-Allen-Cahn regime (150&t&1500 for the 7003 sys-
tem! that true power-law growth is observed. While naı¨ve
least-squares fits to Fig. 2 indeed yield apparent exponen
early and intermediate times, similar to those recently p
lished by Fialkowskiet al. @15#, those regimes arenot prop-

FIG. 5. The quantityA21(t)5@12A^c2(r ,t)&#21, which at late
times is proportional to the characteristic lengthR(t). The solid line
is a least-squares fit to the 7003 data for t>150, which yields an
estimate forn of 0.51260.01.
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erly described by simple power laws. We also observe fr
our data that, in disagreement with what is claimed in R
@15#, thet1/2 growth in general is observed at timesbeforethe
final deviation of the average order parameter from ze
This final loss of symmetry is a finite-size effect, and it o
curs only in the very-late-time regime.

In conclusion, we have presented the first unequivo
results confirmingt1/2 domain growth for integration of a
three-dimensional numerical instance of ModelA, describing
phase ordering in a system with nonconserved order par
eter. In this late-time regime oft1/2 growth we found excel-
lent agreement between the observed characteristic le
and the analytic result of Ohta, Jasnow, and Kawasaki@31#.
In order to obtain these solid numerical results, very lo
simulations of very large systems were necessary.
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APPENDIX

In this Appendix we sketch the derivation of Eq.~10! for
the characteristic lengthR(t) in terms of the total number o
bonds between positive and negative nearest-neighborc(r i).

In a d-dimensional system with infinitely thin, randoml
oriented interfaces, the inverser derivative of the normalized
order-parameter correlation functionC(r ,t) is @29,30#

R~ t !5~12^c&2!V/~Sgd!, ~A1!

whereV is the total system volume,S is the total interface
area, and the geometric factorgd equals four times the ratio
of the volume of a (d21)-dimensional sphere to the surfac
area of ad-dimensional sphere of the same radius. On
d-dimensional hypercubic lattice of unit lattice constant, t
number of bonds broken by the surface of ad-dimensional
sphere of radiusR equals 2d times the corresponding dis
crete approximation to the volume of a (d21)-dimensional
sphere of the same radius. The interface area per unit vol
S/V is, therefore, related to the total number of brok
bonds, which is given by the sum in Eq.~10! and here called
S, asS/V52S/(Ndgd). The relative error in this estimat
comes from the discrete approximation to t
(d21)-dimensional volume and is}1/R.

The order-parameter dependent factor in Eq.~A1! is in-
significantly different from unity for the times studied her
and it is, therefore, ignored. Inserting the expression forS/V
in terms ofS/N in Eq. ~A1! and choosingd53 yields the
first term in Eq.~10!. The subtraction of unity is included to
makeR(t) vanish for the random initial condition.
7-5
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